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Integrals needed in calculations of electron scattering off atoms are solved. The basis 
functions consist of Slater-type functions to describe the bound-like character of the 
wavefunction, and spherical Bessel functions of the first and second kind for the free 
particle portion. A damping factor is used with the latter Bessel function to insure proper 
behavior at the origin. With integral representations of the Bessel functions, numerical 
techniques are developed to obtain all one- and two-electron integrals. 

INTRODUCTION 

Theories of electron scattering off atoms and molecules entail an expansion of 
the total wavefunction in terms of bound state functions and a scattering function 
which displays an appropriate asymptotic behavior. In particular 

y = c w@,(L z..., 4 x& + l>>, (1) la 
where cZ! is the antisymmetrizer, may be considered as well as wavefunctions 
containing additional terms which account for the bound-like character. Whatever 
the choice, solutions for the basic integrals which arise will be solved in this paper. 
Here 

%‘O@,, = E,Wn (n = 1, 2,...) (2) 

are the solutions of the target state, and 

Zy=EEY/ 

is Schrijdinger’s equation for the scattering problem, where 

3Y = .zP + V(n + 1) - 4VZfl ) 
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V(n + 1) is the potential interaction between the scattering electron and the 
target, and E = II&O + $kn2. The scattering function is expanded in terms of 
partial waves 

Xn = f &sg Pz(cos e) 
1=0 

(3) 

which obey the boundary condition G,(O) = 0 and have the asymptotic dependence 

G,(kr) - Wh(kr) + tan qdkr)l. (4) 

The asymptotic solutions are Bessel functions of the first and second kind. The 
approximation 

with 

G,(r) = f gmrme-rrmr + Wdkr) + tan rlzE;~+&r) ydkr)l, 
VI=1 

F,(cr) = (1 - e-cr)s, 

(5) 

has been used by a number of authors [l] to insure proper behavior both at the 
origin and for large r. 

To simplify the integrals required for electron scattering, Armstead [2] proposed 
the functional form 

to replace F,,,, yz in Eq. (5). 
An advantage of & is that it remains finite as r -+ 0 without the complication 

of a damping factor, and the integrals require only the Bessel functions j, . Also 
asr-+co 

cos(kr - (l/2) T) 
h(kr) - - kr , 

which yields the correct asymptotic form of y, . 
However, because & is not a solution of Bessel’s equation, accurate approxima- 

tions to Gz require many bound-like functions to simulate yz in the region beyond 
the vanishing of the potential and before yz achieves its cosine dependence. This 
is seen by substituting & into Schrodinger’s equation for V = 0. 

94 = (al2 + 81+ 2) j 
l. 1 (kr)3 ‘+ 

,(kr) 
(8) 
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where 

2 1 = L d” r _ w + 1) + k2 
r dr2 r2 ’ 

whereas 

-Wk+&vl-+ =%km = 0 (10) 

if c is chosen such that F 21+1 ---f 1 when the potential becomes vanishingly small. 
The right hand side of Differential Eq. (8) approaches zero as (kr)“l. As the 
incident energy (and also k) decreases, larger values of r must be attained before 
oEp1& becomes vanishingly small, and consequently, bound-like functions must be 
employed to construct the free-particle portion of the wavefunction. 

To circumvent this problem, asymptotic forms which are solutions of 
Schrijdinger’s equation when V = 0 (Eq. (9)) are employed in this paper. 
Although the number of integral types increases as well as difficulty in their 
evaluation, the author feels that the proper asymptotic form, which is attained 
just outside the influence of the potential region, will reduce the number of terms 
in the approximation to G1 . Inclusion of the damping factor with yz in Eq. (5) 
increases the complexity of the recursion relations for analytical evaluation to 
the extent that up to six dimensional arrays must be formed. This dilemma led to 
examination of numerical techniques based on integral representations because 
(i) they can be used routinely throughout the entire formulation, thereby reducing 
the possibility of errors in the coding of the integrals, and (ii) these techniques 
can be used to check the faster analytical methods as they are coded. 

The basic types of integrals [3] needed for the linear variational procedures of 
Kohn, Hulthen, and Feshbach and Rubinow [4] have already been set forth for 
more restricted cases using the approximation Eq. (6), and they are essentially 
the same as needed here. The following five one-electron integrals 

s 
m dr rPe+ft(h, r) (P 3 --I), (11) 

0 

I 

m 

dr rPe-“‘&h, r) Xm(k, r) (P 3 --I - m), 
0 

and four two-electron integrals 

Iom dr rpe-arfl(h, r) lrn dv vqe-BV,Xm(k, v) 
c 

(12) 

(13) 

arise, where p > -I, q 3 --m, and fZ and X, are j,(hr) and/or Fzu+l(cr) y,(kr) 
forp = iand m. 
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Integral representations of the Poisson type [5] 

h(z) = & IO1 dv (1 - 7p COD 

and 

sin(z7) - Jorn de e-“E(l + ,$2)z/ (15) 

give rise to i&grands containing Fourier and Laplace transforms and variations 
of these transforms over the part of the infinite interval after integration over r 
has been performed. The resulting integrands are polynomial-like, and conse- 
quently, Gauss-Quadrature can be applied. In all, nine types of integrals will be 
evaluated. In subsequent sections the variables 71 (and +j) and 4 (and $) will be 
reserved for integration on the intervals [0, l] and [0, co] respectively. Modified 
weighting factors w and p introduced with Integrals I and II for transformations 
r) = (1 + x)/2 and { = (1 + x)/(1 - x) to the Legendre interval are used con- 
sistently throughout this paper. For convenience the following coefficients are 
defined: 

hz 
az(h) = 2y! 2 

b,” = (;) (-l)? 

In the presentation upper case Latin letters will be used to define the integrals and 
upper case script letters will be used to denote their corresponding integrands. 
The sine and cosine Fourier transforms encountered are 

C,(a, h) = lom dr rpe-mT cos(hr) 

and 

S,(ol, h) = loW dr rpe+ sin(hr) 

(19) 

= p! [ 012 ; h2]9+1 ‘E’ (-l)W (,p,=1I)(;Y 
m=o 
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These sums are polynomials in h of degree 2[(p + 1)/2] and 2[p/2] + 1 respect- 
ively, modified by the damping factor (a2 + h2)-p-l which doesn’t significantly 
alter the near polynomial character of these transforms over small ranges of h. 
In practice ht will appear in place of h were t is 4 or 1). 

ONE-ELECTRON INTEGRALS 

INTEGRAL I 

That 

Azm(a, h) = lom dr me-Qhr) 

= az(h) s,' 4 (1 - q2)' Cn+z(a, hr)) 

(20) 

with n > I can be obtained directly by use of Eq. (14) and integration over r. 
Since the Fourier cosine transform is nearly a polynomial in v, the integrand of 
Eq. (20) is well represented by a polynomial of order N = I + 2[(n + I + 1)/2]. 
With the transformation 7 = (1 + x)/2, the Gauss-Legendre quadrature becomes 

AF = h’ f w~‘C’~+Z(O~, hqi), 
i=l 

(21) 

where the weighting factors 

w,z = w, (1 - 7i21Z 
e 2 2z+lI! 

are related to wi and Xi , the weights and zeros respectively of order N. Throughout 
this paper this definition of wiz and the relationship between Q and xi will be 
retained. 

INTEGRAL II 

Bln(a, h, c) = joa dr rne-o”ryz(hr) F21+1(cr) 

= az@) js, d7 (1 - 12)’ &$‘+l(ol, hq, c) 

- 
s 

m dtJ (1 + (3” B’:~z+’ (a 
0 

+ hi?, cl/ (23) 
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with n > -1, where 

.@p(u, h, c) = s m dr r pe-+ sir@) F,(cr) 
0 

= fi bpsSe(u + pc, h) 
p=o 

(24) 

is a sum of Fourier sine transforms, and 

@?S(u, c) = Iom dr rPeP“F*(cr) 

= p! i b,“(u + PC)-“-I 
*=O 

(25) 

is a sum of Laplace transforms. 
It is clear that the first integral of Eq. (23) can be evaluated by Gauss-Legendre 

quadrature. Since F, >, 0, 8, “)’ > 0, and consequently, one might expect stable 
recursion relations to exist. These are developed in Appendix I. The integral from 
0 to 00 can be transformed to - 1 < x < + 1 by 5‘ = (1 + x)/(1 - x). This 
transformation is chosen since g(2) is of degree -[31+ 2 + n] in 5 for Iarge 5, 
and the integrand of Eq. (23) is of degree -(n + I + 2) in 4. The rapid change of 
992) for intermediate values of .$ and decay for large values of .$ suggested the 
above transformation to favor large 4 in a Gauss-Legendre quadrature. In Fig. 1, 
u~@,“)~~+~(u, c) is plotted as a function of a. For large 4, a M ht, and consequently, 
the transformation a = (1 + u)/(l - u), -1 < u < 1, is chosen as a convenience 

FIG. 
or 1 < 

0 0.5 I.0 
c1 

1. Demonstration of the near polynomial character of 647r’*‘+l over the interval Og u < 1 
a< 03. 
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for analysis. Because a 2 9 t2) changes slowly for -1 < u -=c 0, this region is omitted 
from the figure. The case n = --I is examined because the integrand behaves 
like a-a for large a. 

a2z3?(2) is seen to vary slowly over the range of 0 < u < 1; 9c2) can be well 
represented by a polynomial in a and hence for 0 < I < co. The integrand 
(1 + 53” 9~~z+‘(~ + h[, c) will b e h ave like (a2”/h23 S2) for large &, but for 
small 5 a slight distortion of the curves will result. 

For the above transformations the Gauss-Legendre quadrature becomes 

B:(a, h, c) = h’ ;j c+~&‘~~+~(LY, hvi , c) - &jz&‘$;z+l(a, h& , c) (26) 
i=l j=l 

where 

p,z = w- (1 - xiv2 (1 + mz I z 291 

is related to the weights Wi and zeros xi for Gauss-Legendre quadrature of order 
N, . Equation (22) defines wiz for order N1 . Throughout this paper this definition 
of pi’ and the transformation between xi and [i already mentioned will be retained. 

INTEGRAL III 

Dt”,(a, h, k) = JOa dr r”e-a’jz(hr)j,&r) 

= az(h) um(N 

X 6 d’~ (1 - ‘13” j-l 4 (1 - +j2jm B,a+z+,n(a, hq ktj) (28) 
0 

with n > --I - m, where 

BJu, h, k) = lam dr r”e+ cos(hr) cos(kr) 

= HG@, h - W + C&, h + 4). (29) 

The Fourier transforms are polynomial like in q and +j, and therefore, the same 
transformation and integration techniques may be applied for each dimension 
of this double integral as described for Integral I. The integrand will be approxi- 
mately of order N1 = I+ q in q and N2 = m + q in ij with zeros and weighting 
factors Q , oiz and +jj , 6&m respectively, where q M n + I+ m + 1. Hence 

D,&(a, h, k) = z UJ~’ ; (r)j”‘ZSn+l+m(a, hqi 3 kfj,). (30) 
i=l j=l 



276 KENNETH J. MILLER 

INTEGRAL IV 

EZd~, h, k, 4 = fom dr rne-a’jz(hr) x&r) F2m+l(dr) 
= a,(h) G&w 

with n >, --I - m, where 

gk”(~, h, k, d) = fom dr rf’e-a7 cos(hr) sin(kr) F,(dr) 

= 4 i ‘%%‘%(a + pd, h + k) - &(a + pd, h - k)}, (32) 
IA=0 

and 

&$)‘(a, h, d) = foa dr rpe-ar cos(hr) F,(dr) 

= i hwa + pd, h). (33) 
p=O 

~9) is a sum of Fourier sine transforms, and the same argument applied to 
Integral I applies here. For 6 (2) the same transformation used to favor large 5 of 
Integral II is used here, and the same arguments apply here also. The order of 
the polynomial fit required is N, , N, M n + I+ 3m + 2 with zeros and weighing 
factors Q and wiz, i~j and CJ$~, and fj and pi”. Hence Gauss-Legendre quadrature 
yields 

wiz 1 4 m (1)2m+1(~, hTi , kq, , d) Bm+Z-t7n 
j=l 
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INTEGRAL V 

= s m dr rne-‘%thr) F2t+dcr) y,(kr) f’2m+ltdr) 
0 

= 4) am(k) 

x 1,’ dr] (1 - 
0 

g2)‘j ’ d+j (1 - +j’)” S$;,‘m’ 2m+1 (cu, hv, kij, c, d) 
0 

+ Jorn d4 (1 + 59”/om di! (1 + t2)” Liz!;;% 2m+1 (a + ht + kf, c, d) 

- 1’ dq (1 - ~2)’ Jrn df (1 + E”)” 9=$$$: 2m+1 (a + kg, hv, c, d) 
0 0 

- sdf df (1 + 6’)” l1 dfj (1 - f2) “S,$?::l 2m+1(ol + h& k+j, c, d)/ (35) 

with n 3 --I - m, where 

c~S$)~~(a, h, k, c, d) = 
s oa dr Pe+’ sin(hr) FS(cr) sin(kr) F,(dr) 

= 4 i b,” i b,t{C,(a + pc + vd, h - k) 
/A=0 V=O 

- C,@ + pc + vd, h + WI, (36) 

9$y7, c, d) = 
I 

O3 dr rPe-a*FS(cr) F,(dr) 
0 

and 

= p ! i b,” 5 b,t(a + pc + vd)-“-I, 
l.r=O I=0 

(37) 

9$)‘@ + k, h, c, d) = Irn dr rpe-(a+k)r sin(hr) F,(cr) Ft(dr) 
0 

= i b,” i b,tS,(a + k + pc + vd, h). (38) 
p=o “Z” 

The integrand of s-(2, is always positive. Stable recursion relations, which are 
an extension of those developed for LW2), are presented in Appendix B. 
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Gauss quadrature yields 

- ~iZiF%&+z+m kd2z+1 2m+1 (a + k.$ , hqi , c, d) 

Z - mo-(3)21-U 2m+l - pi Wj d n-w-m (a + hti , k;jj , c, 41 (39) 

for polynomial fits of order n + 31+ 3m + 3. 

TWO-ELECTRON INTEGRALS 

INTEGRAL VI 

W~(CX, h; ,fl, k) = Iow dr rW-w+jz(hr)~m du &-B”j,(ku) 
7 

= a,(h) Uk) 

wherep >, --I and q >, -m. 
The functions QE are discussed in Appendix C. 

INTEGRAL VII 
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with p > --I and q > -m, where 

%$Jt(a, h; k, /3, d) = im dr rpe-aT cos(hr) SW dv vQe-+ sin(kv) Ft(du) 
r 

and 

= i butQ;;‘2(a, h; B + pd, k), 
p=O 

(42) 

2Z$Jt(a, h; fl, d) = Ior dr rpe-“* cos(hr) fin dv vge-BUFt(dv) 
T 

Hence 

= i b,“Q”,“,(a, h; B + pd, 0). 
L-0 

(43) 

XE(a, h; /9, k, d) = hzkm c c {~i~$‘S-~~~b;lm(,, hvi ; kijj, ,8, d) 
i j 

- % Pj %D+Z q+m a, 77i T ‘- m (2)2m+1 ( h * ,f3 + kE; , d)>. (44) 

INTEGRAL VIII 

Yfz(a, h, c; @, k) = Ia dr rpe-aryl(hr) F2t+,(cr) fm dv vqe+‘jm(kv) 
0 c 

= &‘(S, k) Bz”(a, h, 4 - X%(P, k; 01, h, cl. (45) 

INTEGRAL IX 

= Iom dr rpe-U7y,(hr) Fs(cr) La dv vqe-Bwym(kv) F,(dv) 

= azV4 am(k) u’ 4 (1 - q21z j-’ d+j (1 - +“>” ~::;fq+,&, hq, c; 8, kq, d) 
0 0 
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withp>,---I,q>-m,s=21+1,andt=2m+l,where 

9$;st(a, h, c; /kl, k, d) = jam dr rpe+ sin(hr) Fs(cr) 1 O” dv vQe+ sin(kv) F$(dv) 
c 

= i b,” i b”“Q;; m/z (a + pc, h; fl + vd, k), (47) 
p=O V=O 

2T~~St(a, c; ,l3, d) = Irn dr r9e-“‘F8(cr) jrn dv vqe-sVFt(dv) 
0 7 

= i b," i bv"Qz(a + PC, 0; B + vd, 01, 
p=O L-0 

(48) 

23@~~St(~, h, c; /3, d) = J’ m dr r%z-ar sin(hr) Fs(cr) s m dv vqe-@‘Ft(dv) 
0 7 

and 

= 2 b,” i bVte”$ O (a + pc, h; /3 + vd, 0), 
p=O “=O 

~E’~~‘~(ct, c; /?, k, d) = jm dr Pee-“‘F,(cr) jrn dv vqe-BU sin(kv) F,(dv) 
0 r 

= i b,” i bV”Q”,,n’“(a + pc, 0; fl + vd, k). 
p=O v=O 

(50) 

The final formula for Gauss-quadrature follows, but it will be omitted here. 

CONCLUSION 

To check some of the integral calculations, the following limiting forms were 
used to relate some of the more complex integrals to the simpler ones. 

&+“(a, h) = ljz d,(k) D?,(cL, h, k), 

B;+‘(a, k, c) = Ii& d,(h) Ek(a, h, k, c) 
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In all cases the basic limiting form forj, was used, i.e., 

l& j,(kr) = (2:$:) ! = [dl(k)]-1. 

Although the computation time for numerical quadrature is greater than the 
evaluation by analytical techniques, this route is taken as a first step in the calcula- 
tion of scattering integrals. Analytic techniques are currently being developed to 
evaluate these integrals. 

Use of proper asymptotic forms, viz. Bessel functions of the first and second 
kinds, should result in more compact expansions of the scattering wavefunction. 
The increased computation time required to compute integrals involving both j, 
and yz over that required when yz is replaced by & of Eq. (6) may be somewhat 
offset because fewer bound-like terms should be required in the scattering function. 

APPENDIX A 

Evaluation of 

@“(a, c) = 
s 

@ dr rPe-V8(cr) (A4 
0 

proceeds from the following recursion relation obtained after integration by 
parts: 

s:I;(u, c) = + 9$‘S(u, c) + f 9l~$‘(u + c, c). (A.21 

This formula is stable for recursion outward as indicated in the diagram below. 

p-1 w. 

P f 
S-I S 

The dots represent the “a” plane and circles the “a + c” plane. 
To obtain the ~@:‘“(a, c) one must first construct G~‘~~‘~(u + [S - j]c, c) for 

j = 1, 2,..., S, and L3~2’o(u + SC, c) for k = 1, 2,..., p with the recursion formulae 

i%+f”+l(u, c) = ‘O’ T I) C@‘j(u + c, c), (j > 0), 64.3) 
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@&.z, c) = kfl cqpJ(a, c), 
a (k Z 0). 64) 

The recursion scheme begins with the first element 

@f’“(a + SC, c) = J- a + SC (A-5) 

denoted by 1 in Fig. 2. Then Eqs. (A.3) and (A.4) are used to generate respectively 
the elements labelled 2 and 3. With Eq. (A.2) element 4 and all others in the plane 
to the coordinate (a, s, p) are calculated. Examination of the recursion relations 
shows the u-*-+~ dependence of Integral (A.l). 

2 
2 

2 
a+sc I 4 S,P 

-r & O,atw)c 3 P 
in 3 P-1 
T f 
a a+c 3 

a 30 ’ /k 

FIG. 2. Recursion scheme for SYP“. The elements are generated in the order denoted. 

0 2 s 
-j-+ 

APPENDIX B 

Evaluation of 

proceeds from the following recursion relation obtained after integration by parts 
(the superscript (2) will be omitted): 

C:“,~(Q, c, 4 

P+l = ___ cF;(u, c, d) + G 9;;; “(a + c, c, d) + ; P;:;;‘(u + d, c, d). 
a 

(B.2) 
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This relation is stable for recursion outward as indicated in the diagram below. 

P 
t 

-r 

P-1 

t-1 
S-l S 

The connection between the indices and the parameter a is related as follows: 
for s = 2Z+ 1, t = 2m + 1 the argument is (I, but for some S and f the value of 
the argument in the recursion relation will be a + (21+ 1 - S)c + (2m + 1 - t)d. 
In order to generate this array one needs 

~%J -I- [21 -I- 1 - Sl c f [2m + 1 - Z] d, C, d), (B.3) 

and 
*:(a+ [21+ 1 --SIC+ [2m+ l]d,c,d), (B.4) 

S$‘(a + [2m + 1 - I] c + [21 + l] d, c, d), (B.5) 

forO<~<s,Odtdt,andO,<jj<p. 
Functions (B.4) and (B.5) are 9YfJs and 98Fji which were developed in Appen- 

dix I. 
Function (B.3) is obtained with the recursion relation 

Si”(a, c, d) = b3tll a + z 9;-l “(a + c, c, d) + ; .F;“-‘(a + d, c, d). 

The recursion scheme begins with calculation of the arrays of the functions 
(B.3), (B.4), and (B.5). Then the recursion relationship (B.2) is used to generate 
all elements in the three dimensional array of S, I, and p until Fit is obtained. 
The implicit dependence of the argument a on 3 and t permits use of a three 
dimensional recursion scheme. 

APPENDIX C 

Recursion Relations for Qgg 

The four exchange integrals are in a form in which the integrands contain sine 
and cosine functions. By defining 

Qg(a, h; 8, k) = irn dr rPe-OrT cos(hx - O) Fu~(j3, k, r), (C.1) 
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where 

U;@, k, r) = Jrn dv vqe-B” cos(kv - e) 
T (C-2) 

is an incomplete Fourier transform, all possible integrands for the exchange 
integrals are obtained by setting a and E equal to 0 and/or r/2. Integrating Eq. (C-2) 
twice by parts yields 

= (-k sin(kr - c) rqe+ - q cos(kr - e) rq-le+ + /I cos(kr - e) rqe-@ 

- dq - 1) %-2(B, k r) + 2q@WA k, rN/(k2 + Pa), (C.3) 

and substitution into Eq. (C.l) yields the recursion relation 

(k2 + 8’) Q;,(a, h; B, 4 

= -kS”,J;nl” (a + 8, k k) - q’%+q-d(y. + B, h, 4 + P%+& + B, h, k> 

- dq - 1) QE-2(~, h; B, k) + 2qPQ:-,(a, h; B, k), cc.41 

where the Fourier-like transform 

S~;(CY, h, k) = lorn dr rpe-m7 cos(hr - u) cos(kr - E) (C.5) 

must be added into the recursion relation when one proceeds along q as indicated 
below. 

P ’ b’ 

q-2 q--l 4 

Integration of the outer integral of Expression (C.l) by parts twice yields 

= &,,h sin &d(j?, k, 0) - 6,, cos Hi@, k, 0) + S,,a cos CM’@, k, 0) 

+ pBZq-l(a + B, h, k> - ~~Zq(~ + B, h, k) + hQ;+,“,‘2 ’ (a + S, h, k> 

- P(P - 1) Q”a2 q (a, h; B, k) + 2paQIL q (01, h; 16, k), (C.6) 

where @TQQ, k, 0) is a Fourier sine or cosine transform respectively when E = 7r/2 
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and 0. Recursion with addition of B and V proceeds along p as indicated below. 

4 * ,’ 

P-2 P--l P 

Recursion Relation (C.4) is used to move along q for fixed p whereas Eq. (C.6) 
is used to move along p for fixed q. 59’; is related to Fourier transforms, and it is 
calculated as needed. To start the procedure Q;;(cu, h; /?, k) must be calculated 
and a simple integration yields 

where 

and 

ez = [- $ M + 4 + $ [C + Dl]/(P + 83, 

0 r/2 QOO = [$ rc + a + + P + Bl]/W + p), 

(C-7) 

Qoo 
nl2 0 = [+ rc - Dl + 4 [A - q/w + pa), (C-9) 

¶I2 nl2 _ Qoo - [$ [A - 4 + p P - Cl]/@2 + p), (C.10) 

A = (h + k)[(h + Q2 + (01 + #Q21-l, 
B = (k - h)[(k - Iz)~ + (a + r6>2]-1, 

c = (a + /WI + M2 + (a + /921-1, 

D = ((11 + fX(h - kj2 + (01 + j021-‘, 
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